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Abstract-A previously proposed simple model of generalized plasticity is modified so that it allows
behavior that is asymptotically perfectly plastic or strain-softening. Initially presented in uniaxial
form, the model is then generalized to multiaxial stress. Numerical implementation is developed
first through direct integration of the rate equations, including special cases in which the solution
may be obtained analytically, and then by means of a return-map algorithm, which is particularly
well suited to the finite-element method; consistent algorithmic tangent moduli are derived as well.
Numerical examples are presented to illustrate the various approaches.

I. INTRODUCTION

Generalized plasticity is a model developed by one of the authors (JL) as, first, the result
of an axiomatic approach to inelastic behavior described by internal variables (Lubliner,
1974, 1975, 1980, 1984), and second, as a practical way of describing observed behavior of
solids which unload elastically when loaded into the plastic range but in which, upon
reloading, renewed plasticity begins before the attainment of the stress where unloading
began (see Fig. 1). To this end, some simple models were proposed (Lubliner, 1981, 1989,
1991). In the model discussed in the last-named reference, the relation between the plastic
strain eP and the stress a upon initial loading in uniaxial stress is governed by

deP 1
da = Hf3<a-ay -HeP

). (1)

Here <.) is the Macauley bracket, ay is the initial yield stress, and H [denoted 0( in Lubliner
(1991)] and f3 are two additional positive constants with the dimensions of stress. The
resulting stress-strain curve is asymptotic to the line a = ay + f3 +H eP, so that H is the
asymptotic plastic modulus, and f3 is the displacement in the stress direction between the
asymptote and the line a = ay+HeP representing the yield surface. The limit f3 = 0 rep­
resents classical plasticity, that is, the stress remains on the yield surface. However, the limit

stress

strain

Fig. I. Stress-strain loading-unloading-reloading diagram motivating general plasticity.
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as H ~ 0 is singular, in that the solution is u = Uy independent of 13; consequently, the
model is limited to work-hardening solids. If eqn (1) is modified by replacing H in the
denominator on the right-hand side by some other constant, say R, then the limiting curve
as H ~ 0 is the parabola u = Uy +J2Rf3e P• Numerical implementation of the model when
H is small (though positive) leads to curves that overshoot the asymptote, confirming the
singularity.

It may be noted that the derivation of a stress-strain curve that is asymptotic to a
straight line is the goal of the many "two-surface" models that have been presented in the
past 15 years or so. The simple generalized plasticity model achieves this without any special
assumptions.

In the present paper, a modification of the just-described model, which eliminates the
disadvantages of the model described by eqn (1), is presented in Section 2 in both a uniaxial
and a multiaxial formulation. In Section 3 certain simple problems are solved by direct
integration of the rate equation, which in some cases results in a closed-form solution that
can be used to test other solution methods. Section 4 shows how the return-mapping
algorithm can be used to solve problems governed by the proposed model in a finite-element
setting.

2. NEW MODEL

2.1. Uniaxial formulation
The disadvantages presented by eqn (1) can be eliminated by postulating the following

equation in its place:

deP <u-Uy - HeP)

du Hf3 +R[f3 - (u- Uy - HeP)]'
(2)

where Hand 13 have the same meaning as before, and R is a positive constant with the
dimensions of stress. Upon defining u = (u-uy-HeP)/f3, eqn (2) can be solved explicitly

for U and eP in terms of u, and if h~HIR then the resulting initial loading curve is given
parametrically by

ReP 1 ( I )T = I + h In 1_ u - u ,

U-Uy 1 ( 1 )
-13- = 1+h h In 1_ u +u , (3)

for 0 :::; u < I, provided h > - I. The fact that H can be negative means that the model can
describe even stress-strain curves whose asymptotes represent softening; see, for example,
Fig. 2, showing dimensionless loading-unloading-reloading diagrams (for H = -O.IE,
E = R, and Uy = 13).

As in the preceding model, the plastic modulus H can be decomposed into a kinematic
part H' and an isotropic part HI', with H = H' +HI', and a yield function f defined by

(4)

where K is the isotropic hardening variable defined by dK = IdePI. Note that unlike eqn (8)
of Lubliner (1991), the yield function defined by eqn (4) is not dimensionless but has
dimensions of stress. For arbitrary loadings, then, eqn (1) may be replaced by

where

i P = <!>sgn (u-H'eP)<sgn (u-H'eP)o-), (5)



A model of generalized plasticity

triP
2

3173

+--.-----r
2
----r-..l...-'4r---.---

S
r-----r---r

S
--.------"0 ReiP

Fig. 2. Loading-unloading-reloading diagram for a softening material (H = -0.1£).

(I>
</J = Hf3+R(f3-/),

replacingeqn (4) of Lubliner (1991).

2.2. Generalization to mu/tiaxial stress
The generalization of the yield function 1 to multiaxial stress states is

1= (j-uy-H"I(,

where I( and (j are defined by

(6)

(7)

with the definitions of the norm 1'1 in strain-rate space and of the seminorm 1'1' in stress
space depending on the yield criterion selected. The corresponding generalization of eqn
(5), with an associated flow rule assumed, is

£P = </Jv(v: iT>,

where </J is defined byeqn (6) and

For the von Mises and Tresca yield criteria, 1'1 and 1'1' are defined as follows:

(8)

von Mises,

Tresca,

where s is the deviator of a~ tI-J,H'eP, and where the subscripts in the Tresca case refer
to principal-axis components. Consequently, for the von Mises case v is given by
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while in the Tresca case

J. LUBLINER et al.

VI = ~[sgn (0'1 -0'2) +sgn (0'1 -0'2)],

V2 = ~[sgn(a2-a3)+sgn(a2-al)]'

V3 = ~[sgn (0'3 -0'1) +sgn (0'3 -0'2)]'

(9)

It can be shown that the parametric representation of the o--eP relation given by eqns
(3) for initial uniaxial loading can be generalized to a relation between a and K under
arbitrary loading. The discussion will be limited to the von Mises criterion. It follows from
eqn (8) and the preceding definitions that

K = ¢<v:iT). (10)

Since v is purely deviatoric, it follows that v: iT = v: S, and hence, from the definition of s,

But

v:s = a, ~v:i;P = K.

Therefore

K = ¢<a+H'K),

so that

. ¢ <")
K =i -H'¢ 0- .

(II)

Introducing, as before, U = /113, with / given by (7), and noting that a = f3it+H"K, one is
led finally to

(12)

where b = f31R. In problems in which it ~ 0, this equation may be integrated to give

and correspondingly,

a=o-y+ l~h[h"lnl~U +(I+h')U}

where h' = H'IR, h" = H"IR.

(13)

(14)

3. DIRECT INTEGRATION OF THE RATE EQUATIONS

3.1. Special case: purely isotropic hardening under stress control
The integration of the rate equations becomes especially simple in the case of purely

isotropic hardening (H' = 0, H" = H) under stress control. In this case a= (1, so that
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10'1' = a, which is determined by u. Thus if an increment du is given, dK and da are
determined, and if the direction of the stress increment dO' is given by w, that is, dO' = w da,
where ais defined by

dO' = Idaf,

then

~ada = s:ds = s:dO' = s:wda,

so that

2 ada
dO' = ~w-­

3 s:w'
(15)

(provided s: w '" 0; the case s: w = 0 means that instantaneously da = 0), while the plastic
strain increment is

3s
deP = -dK

28'

so that the total strain-deviator increment is given by

and the determination of the strain is reduced to integration.
As an example, we consider the problem of a thin-walled circular tube that is first

loaded by an axial force and then by a gradually increasing torque, while the axial force
remains constant. With no internal or external pressure, the state of stress may be assumed
to consist of an axial normal stress 0' and a shear stress r, and the only strain components
that need to be considered are the axial normal strain e and the shear strain y. For the case
of pure torsion, with (J = 0, the solution may be obtained from the uniaxial case described
by eqns (3) by substituting '//}3 for eP and }3r for (J. With (J different from zero, the
plastic strain increments are given by

(J
deP = -::dK,

(J

3r
dyP = -=-dK,

(J

and dK may be obtained from eqn (13) as

b U
dK = I +h I _ u duo

(16)

Moreover, a= J(J2 +3r2 is given as a function of u (for u ~ 0) by the right-hand side of
eqn (14) with h" = h and h' = 0, that is

and r = J (a 2
-(J2)/3. Since (J is constant, the right-hand sides ofeqns (16) may be expressed

as functions of u times du and integrated accordingly. For (J ~ (Jy, the initial value of u is
zero; for (J > (Jy it is given implicitly by eqn (3)z. The integration is simplified if the
integration variable is changed from u to v = In [1/(1- u)]. Some results, obtained by means
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Fig. 3. Torsion of a thin-walled tube under constant axial force, purely isotropic hardening.

of the trapezoidal rule with Av = 0.001, are shown in Fig. 3 as plots of r against y (where
y = yP+r/G) for (1 =°(solid line), (1 = (1y (dashed line) and (1 = 2(1y (dotted line); the
values of the material parameters (in arbitrary stress units) are G = 5000, H = 600,
R = 2000, fJ = 16 and (1y = 16.

3.2. The general case: comparison with previous solution
In the presence of kinematic hardening, or under strain control (or mixed control), the

right-hand side of the equation for dsPcontains sP, so that the problem is one of solving a
set of possibly coupled nonlinear differential equations. The preceding special case, for
which an explicit solution is available, may be used to test solution methods.

Provided if is no less than (1y and is not decreasing, eqn (11) may be written in the
form

dK
dii = <I>(if, K), (17)

where <I> is defined by eqn (11) and is given explicitly, as a result of eqns (6) and (7), by

<I> = _--,----__<(1_----c-(1_y,,--_H_'_'K_>_---,---c-

H"fJ+(R+ H')(fJ-if+(1y +H"K)'
(18)

With if as the independent variable, the differential equations may be solved by the gener­
alized Euler method, namely,

where IX = 0, 1and 1 correspond respectively to the classical (forward or explicit) Euler
method, the trapezoid method and the backward Euler method [see, e.g., Dahlquist and
Bjorck (1974)]. For IX > 0, the equation may be solved for Ki+ I if the second term on the
right-hand side is approximated by

where <1>" = 0<1>/0". When H" = H, if = j3r and K= yP/j3, the problem corresponds to
that of simple shear, as in the previously treated pure torsion of a thin-walled tube, and
may be compared with the previous solution.
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The problem of torsion under a constant axial force requires the additional relations
(16), but they present no difficulty, since eqn (17) may first be solved independently.
Computation with increments in aof 0.1 yields results that are virtually independent of IX­

that is, the use of implicit methods presents no discernible improvement over the forward
Euler method. The results are shown as asterisks in Fig. 3 ; as can be seen, they are virtually
indistinguishable from those obtained by numerical integration.

3.3. Combined hardening under stress control
If H' "# 0, then ais no longer determined by the stress alone and becomes a dependent

variable, along with K and aP• Under stress control, acan be used as the control variable,
and the relations between the increments in the dependent variables and those in aare given
by the coupled differential equations consisting, first, of

da _ 3«s-3H'aP) :w) ~ _ P

da - 2(1 +H'$)a - 'I'(s, (1, a ,K), (19)

where w denotes, as before, the direction of dO' and is assumed known. Combining eqns
(17) and (19) yields, next,

dK _ ~ ~ _ P)
da - $'1' - 0(s, (1, K, a ,

and the flow rule gives, finally,

daP
_ 3$'1' 2 I P ~ _ P

da - 2a (s- 3H a )- !l(s,(1,K,a ).

(20)

(21)

Equations (19)-(21) constitute a coupled set of nonlinear ordinary differential equations
for the unknown variables a, K, aP, with aas the control variable.

In the example of the thin-walled tube twisted under a constant axial force, the problem
may be formulated in terms of the unknown variables a, K and yP, with r as the control
variable (note that if d(1 = 0 then da = J3 dr, but it is more convenient to work directly
with r). With the definitions

der 1 H"f3+ (R+H')(f3-a+ (1y +H"K)
IJ. = l+H'$ = Hf3+R(f3-a+(1y+H"K)

and

_der IH' Pr = r- 3 y,

the equations are

da 3iIJ. der _
-d = --- = l/!(r, (1, K, yP),r (1

dK _ .II( - p)m( - ) ~ ()( - P)dr - 'I' r, (1, K, Y 'V (1, K - r, (1, K, Y ,

d P r-1'.- - ~ ()( - P) ~ (- P)
d

- - r, (1, K, Y - X r, (1, K, Y .
r (1 (22)

It is clear that the equations are coupled. However, while eP is contained in a, it does not
appear explicitly in eqns (22). In fact, at each step of the solution, eP may be calculated by
means of the relation
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that is,
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The numerical solutions of eqns (22) by any implicit method require the evaluation of
the partial derivatives of t/J, e and X with respect to ii, K and yp. These may be defined as
follows:

at/J at/J at/J G+ H'J1l1>a)t/J H'J1l1>"t/J
H'/i

aa aK ayp ii

ae ae ae (~ - /ill>a)t/J - /ill>"t/J
H' /ill>

~ -A,
aii aK ayp ii

aX ax ax
3i ell> ) 2H'lI>t/J

aa aK ayp iT iT - /ill>a t/J -lI>"t/J2
ii

where

ii-(Jy -H"K
/ill> -

- Hf3+R(f3-ii+(Jy+H"K)'

lI> _ ~__ (R+H)f3
/i ij - [H"f3+(R+H')(f3-ii+(Jy+H"K)][Hf3+R(f3-ii+rry+H"K)]'

Let U~ (ii, K, yP) and g(r, u) ~ (t/J, e, X). If u = Uj has been evaluated at r = 'i> and if
r i + 1= r+i1r, then the generalized Euler method leads to

where 1 is the 3 x 3 unit matrix.
In the case of purely kinematic hardening (H' = H, H" = 0), the problem is simplified

because the right-hand sides of eqns (22) are independent of K and therefore the second
equation becomes unnecessary. Computations show that the results are once again virtually
independent of iX, and no discernible difference is found between results obtained with an
increment in r of 0.16 and one of 0.016. Plots ofr against y, analogous to those of Fig. 3,
are shown in Fig. 4. Note that the curves corresponding to different values of (J, unlike
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Fig. 4. Torsion of a thin-walled tube under constant axial force, purely kinematic hardening.
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those of Fig. 3 for purely isotropic hardening, do not cross; instead, the effect of axial force
disappears after a sufficient amount of twist.

3.4. Combined hardening under strain control
Since v: n= v: S = 2Gv: (e - ilP) and, for the von Mises criterion, v: ilP = ~K, it follows

from eqn (8) that

K = 2G¢<v: e- ~K>,

so that eqn (8) may be replaced by

.p_~ 3G¢ _<_ ..>
e - 2 (1 + 3G¢)0'2 s s. e ,

where S may now be defined as

s= 2(Ge-G'eP),

with G' = G+ 1H'. Note that

(23)

3G¢

1+3G¢

If eis defined by

3G<f> def_

(R+H)f3+(3G-R)f = ((a,K).

de = Idel

and if de = 'I de, then, with eas the independent variable, the differential equations are

dO' _ 3(G-G'O <_. >
de - 20' s.'1 ,

dK (_

d -=~<s:'1>,s a

deP 3( _<_ >
de = 20'2 s s: 'I . (24)

These are not fundamentally different from (19)-(21), and may be attacked by similar
methods of solution. As under stress control, in the case of purely kinematic hardening the
equation for K is superfluous. However, purely isotropic hardening under strain control
does not entail the same kind of simplification that it does under stress control.

4. APPLICATION OF RETURN-MAP ALGORITHM

4.1. Derivation of algorithm
The return-map algorithm, initially suggested by Maenchen and Sack (1964) and

Wilkins (1964), provides an efficient and robust integration scheme in a finite-element
setting for problems in classical plasticity governed by the von Mises criterion and its
associated flow rule. It is based on a discrete enforcement of the yield inequality f ~ 0, and
is a two-part algorithm belonging to the elastic-predictor/plastic-corrector family. In the
first part, a purely elastic trial state is computed; in the second part, if the trial state violates
any of the consitutive equations, a correction is computed and applied in such a manner
that the final state is consistent with the discrete constitutive model. The algorithm has been
widely studied (Nagtegaal, 1982; Simo and Taylor, 1985, 1986; Ortiz and Simo, 1986), as
have its accuracy and stability (Ortiz and Popov, 1985; Simo and Govindjee, 1991).

SAS 30:ZZ-J
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Simo and Hughes (1988) have shown that the algorithm may be extended to other
constitutive models, such as viscoplasticity, if the yield inequality is replaced by a limit
inequality, say 9 ~ 0, and that it is equivalent to the closest-point projection of the trial
state to the limit surface 9 = O. An extension to generalized plasticity was derived by
Auricchio et al. (1991,1992), and will be outlined below.

It follows from eqns (10) that

¢v: ir-K ~ O. (25)

This inequality may be defined as the limit inequality for generalized plasticity. As a result
of the developments in Section 2.2, it may be rewritten as

¢(8+H'K)-K ~ O.

By combining eqns (8) and (10), we obtain

ilP = KV,

(26)

(27)

so that K, aside from being the isotropic hardening variable, may also serve as something
like the consistency parameter of classical plasticity theory. If eqn (27) is approximately
integrated from t j to ti+ I by the backward Euler method, and if for any time-dependent
function aCt) we write, for simplicity, a for a i + \, then

(28)

where

fll+l

Je = K-Ki = Kdt
II

is computed by means of the integration algorithm. It follows further that

s = 2G(e-8; -Jev)

and

(29)

(30)

When the limit inequality is also integrated from ti to t j + I by the backward Euler method,
the result is

¢(a-ai+H'Je)-Je ~ O. (31)

The two steps of the algorithm are as follows:

• Trial state: it is assumed that no plastic deformation occurs during the interval
[t;, f i+ d, so that ), = O. Consequently

and

from which atl can be calculated. If the trial state does not violate the integrated
limit inequality (31), which reduces to atl

~ ai' then this state represents the solution
at t j + I and the second part of the algorithm can be skipped.
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• Plastic correction: If ijl' > iji' then A. must be computed from eqn (31) as an equality.
Equations (29) and (30) can then be rewritten in terms of the trial state and A. :

s = Sl' - 2GA.v,

s= sir - (2G+ 1H')A.V.

It follows from eqn (9) that Sl' is also parallel to v, so that we have

s = 1ijv, (32)

Sl' = 1ijl'v (33)

and hence

v = Vi'. (34)

The following relation between ij and ijl' can now be obtained:

ij = ijl' - (3G +H')A.. (35)

Equations (32)-(35) constitute the return-map algorithm.

When the expression (35) for ij, along with the relation ,,= "i +A, is used in the
expression (7) for f, and that in turn is substituted for f (assumed non-negative) in eqn (6),
the following expression is obtained for </J :

A I -3G'A.

</J = (R+H)P-RA. +3G'RA.'

where H = H' +H" and G' = G+ 1H as before, and

Inserting this expression for </J into eqn (31) as an equality results in a quadratic equation
for A,

(36)

where, with the additional definition

A 2 = ijl' -iji'

the coefficients are

a = 3G'(R-3G),

b = (R+H)P+3G'A 2 -(R-3G)AJ,

c = -A.A 2•

The physically correct solution corresponds to the smallest positive root of (36).

4.2. Numerical examples
The method based on the return-map algorithm was subjected to numerical tests in

the finite-element context using a three-dimensional isoparametric element, based on a
mixed approach (Simo et al., 1985) and incorporated in the Finite Element Analysis
Program [FEAP, Zienkiewicz and Taylor (1989, 1991)]. A consistent linearization of the
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return map algorithm as described in Auricchio et al. (1991,1992) is used to construct the
tangent matrix. The following examples were considered:

• Uniaxial stress.
• Thin-walled tube under tension and torsion.
• Thick-walled tube under internal pressure.

Uniaxial stress was modeled by a cubic specimen, forming a single element, with
boundary conditions and loading set so as to produce a state of uniaxial stress. Both a
simple loading-unloading history and a cyclic loading history were run. The results are
undistinguishable from those obtained by direct integration of the uniaxial rate equations.

The thin-walled tube under combined tension and torsion was studied under both
stress and displacement control. The tests under stress control are equivalent to those
considered in Section 3, and the results are again undistinguishable from those shown in
Figs 3 and 4. In the displacement--{;ontrol problem, the tube is initially (from t =°to
t = 10) extended axially past the yield limit, and then twisted with the axial displacement
maintained constant. With material properties given by

E = 300, v = 0.3, (Jy = 10,

R = 30, f3 = 5, H = 0,

the axial stress and shear stresses are plotted against time in Figs 5 and 6. For comparison,

u.
16 ..--------------------,

12

4

o t
o 5 10 15 20

Fig. 5. Thin-walled tube under tension and torsion (displacement control): axial stress history
(dotted curve: classical plasticity result. analytical and numerical).

Ts.
10 ..--------------------,

8

6

4

2

o t
o 5 10 15 20

Fig. 6. Thin-walled tube under tension and torsion (displacement control): tangential shear-stress
history (dotted curve: classical plasticity result, analytical and numerical).
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Fig. 7. Thick-walled tube under internal pressure (displacement control) : pressure history (dotted
curve: result for f3 = 0, i.e. classical plasticity).

computations for f3 = 0, corresponding to classical plasticity (and in which case the results
are independent of R), are also shown; these results are undistinguishable from those
derived analytically [see, e.g., Lubliner (1990)].

As the final example, we consider a long thick-walled cylinder subjected to an internal
pressure loading. The inner and the outer radii of the cylinder are 2 and 10, respectively.
The material properties are

E = 106
, V =0.3, (Ty = 10 3

,

R = 10 3
, f3 = 500, H = O.

The internal pressure effects are simulated by controlling the displacement of the inner
surface and, as a result, the loading history is expressed in terms of this quantity. The
displacement is increased linearly in time from 0 at t = 0 to 20 at t = 10, and then linearly
decreased back to zero at t = 20. The radial stress on the inner surface is plotted against
time in Fig. 7. The solution for classical plasticity (f3 = 0) is also shown for comparison.
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